
Programmable Fan Cart
Eric Ayars

California State University, Chico
ayars@mailaps.org

/* Fan cart driver version 2.1
 Eric Ayars 5/24/11
 What follows is an abbreviated listing of the code. Full code is available at
 http://physics.csuchico.edu/~eayars/code/fancart.zip
*/

#define MOTORPWM 11
#define MOTORDIR 12
 ... etc ...

byte UserInput = 0;
boolean ProgramState = false;
long int CurrentTime;
byte Speed = 2; // Ranges from 1 to 3 (0 not used).
byte PowerLevel[] = {0, 130, 200, 255};
 ... etc ...

byte ButtonDown() {
 // Returns 3-bit indicator of which buttons are currently down.
 // bit 0 - Mode, bit 1 - Speed, bit 2 - Time
 ...
}

boolean MagnetSensed() {
 // This returns true or false depending on whether the cart just passed a magnet.
 ...
}

void AnnounceReady() {
 // Turns on all three lights to indicate that the fan is ready to go.
 ...
}

void ShowStatus(byte Light, byte Blinks) {
 // Blinks a given light some number of times. Used to show how things are set.
 ...
}

void MotorOn(byte howFast) {
 // turns motor on in direction set by global MotorDirection.
 ...
}

void MotorOff() {
 // turns motor off.
 ...
}

void ProgramMode(byte ProgramThis) {
 // Sets mode, speed, time...
 boolean State = false;
 boolean Exit = false;

 if (ProgramThis & B0001) { // Program the Mode.
 // Turn mode light off and the other two lights on.
 digitalWrite(MODELIGHT, LOW);
 digitalWrite(SPEEDLIGHT, HIGH);
 digitalWrite(TIMELIGHT, HIGH);

 while (!Exit) {
 delay(DEBOUNCE);
 if (ButtonDown() == 1) {
 // Mode button has been pressed. Increment mode.
 Mode += 1;
 if (Mode > 3) {
 Mode = 1;
 }
 ShowStatus(MODELIGHT, Mode);
 }
 UserInput = ButtonDown();
 if (UserInput > 1) {
 Exit = true;
 }
 }
 }
 ... Similar code for changing speed and time omitted ...
}

void DoMode(byte Mode) {
 // This routine runs the desired mode until a button is pressed.

 AnnounceReady();
 MotorDirection = false; // false is forward, true is backwards.

 while (!ButtonDown()) {
 // No button has been pressed, so keep going.

 // Mode 1: the fan turns on and off on alternating magnets.
 if (Mode==1) {
 MotorDirection = false;
 if (MagnetSensed()) {
 if (MotorState) {
 // Motor is currently on. Turn it off.
 MotorOff();
 } else {
 // Motor is currently off. Turn it on.
 MotorOn(PowerLevel[Speed]);
 }
 }
 }

 // Mode 2: the fan turns on at the first magnet, then turns off a set time later.
 if (Mode==2) {
 MotorDirection = false;
 if (MagnetSensed()) {
 // Turn the motor on...
 MotorOn(PowerLevel[Speed]);
 // Wait a given time...
 delay(TimeLevel[Time]);
 // And turn the motor off.
 MotorOff();
 }
 }

 // Mode 3: the motor turns on when it first sees a magnet, then reverses each time it passes a magnet.
 if (Mode==3) {
 if (MagnetSensed()) {
 // Reverse the motor...
 MotorDirection = !MotorDirection;
 // And turn it on in the new direction.
 MotorOn(PowerLevel[Speed]);
 }
 }

 // Add more modes here if desired!

 }

 // Button has been pressed, so...
 MotorOff();
 MotorDirection = false;
}

void setup() {
 /*
 * The setup() function runs ONCE when power is first applied.
 */

 // Set appropriate pins to output.
 pinMode(POWERINDICATOR, OUTPUT);
 ... etc ...

 // Set appropriate pins to input, with pull-up resistors as needed.
 pinMode(MODESWITCH, INPUT);
 digitalWrite(MODESWITCH, HIGH); // setting an input to HIGH turns on an internal 20k pull-up resistor.
 ... etc ...

 // Turn off motor just in case.
 MotorOff();

 // Indicate Status.
 ShowStatus(MODELIGHT, Mode);
 ShowStatus(SPEEDLIGHT, Speed);
 ShowStatus(TIMELIGHT, Time);

 // Indicate ready-to-go
 AnnounceReady();
}

void loop() {
 /*
 * The loop() function runs repeatedly after the setup() function runs once. This loop checks for user input,
 * passes input (if any) to the "ProgramMode" routine, then runs "DoMode". That's it!
 */

 // Check to see whether the user wants anything
 UserInput = ButtonDown();
 CurrentTime = millis(); // Check what time it is

 while (ButtonDown()) {
 // Wait until button is up to decide what to do.
 delay(10);
 }
 if (millis()-CurrentTime > 2000) {
 // Button was held for more than 2 seconds, so program the device.
 ProgramMode(UserInput);
 } else {
 if (UserInput & B0001) {
 // The mode button was pressed.
 ShowStatus(MODELIGHT, Mode);
 }
 if (UserInput & B0010) {
 // The speed button was pressed.
 ShowStatus(SPEEDLIGHT, Speed);
 }
 if (UserInput & B0100) {
 // The Time button was pressed.
 ShowStatus(TIMELIGHT, Time);
 }
 }

 // Here's where it actually does something. Whatever the mode is...
 DoMode(Mode);
}

Fancarts: !ey turn on, they provide an approximately
constant force, and they turn o".

But why stop there? With an easy-to-program Arduino
microcontroller, a Hall switch, and a few inexpensive
electronic components, it’s possible to modify a fancart
to give complete control over where it turns on or o",
how long it stays on or o", and how fast it spins in be-
tween. You can even control the fan direction!

By putting small magnets on the track to trigger the Hall
switch, it's possible to have a constant force over a certain
distance. Measurements of the cart speed before and
a#er the region where the fan is on show that the change
in kinetic energy is equal to the force times the distance,
verifying the work-energy theorem.

!e same microcontroller can turn the fan on at one
magnet, then turn the fan o" some time later. Measure-
ments of the cart's speed before and a#er this impulse
show that the change in momentum is equal to the force

!is cart has the full version of the program on the right loaded into its Arduino, so it can do all three of the
"modes" described above. Try them!

you know that it is ready to go.

second will turn it o".

the speed is currently set at 2. To change the speed, hold the speed button for more than two seconds and then re-
lease it. !e green light will go out, indicating that the device is in speed adjustment mode. Subsequent presses of

other button to exit adjustment mode.

magnet. Mode 3 causes the fan to change direction each time a magnet is detected.

times the time, verifying the impulse-momentum theo-
rem.

And since the microcontroller can have complete control
over everything to do with the fan, it's possible to vary
the fan direction as well as speed. !is level of control
opens up all sorts of new experimental opportunities
such as an "anharmonic oscillator fan cart".

and toner-transfer paper to create a 2-sided circuitboard,
but point-to-point soldering on proto-board works also.

tools using any Macintosh, Linux, or even Windows

that your units do exactly what you want for your teach-
ing purposes.

Want to build this for less? If
you’re comfortable with (or will-
ing to learn) in-system program-
ming, it’s possible to build a
functionally equivalent circuit
using an ATtiny84 and an LM78L05
voltage regulator instead of the
Arduino board. This cuts the
component cost roughly in half,
while still allowing complete con-
trol over all aspects of the fan
behavior. Contact me for an Ea-
gleCAD layout of this circuit if
you’re interested.

PLEA
SE TOUCH!

All this code is just c/c++, so
it’s easy to modify to fit your
particular needs. Once a program
is uploaded to the Arduino, that
program runs automatically any
time the power is turned on... and
you can upload new code to the
Arduino as many times as you need!

You can make these modes do
anything you like! Linearly-ramped
fan speed? No problem:
 for (byte j=50;j<250;j+=5) {
 MotorOn(j);
 delay(50);
 }
Gaussian fan-speed pulse?
Trickier, but do-able...
Have the fan pitch play the
theme from the final movement
of Beethoven’s 3rd symphony?
Uh... what’s the teaching load at your school, anyway?

EagleCAD (www.cadsoftusa.com) is
a very powerful (and free) tool for
making circuit layouts. I highly rec-
ommend it! What you see here was
designed with EagleCAD, printed on
“toner transfer system” paper from
circuitspecialists.com, ironed onto
copper-clad board, then etched using
a ferric chloride solution.

One more thing: this board is designed to fit the PASCO ME-9491 fan cart accessory, but it can work with ANY
small fan motor... or any other DC device that can take a Pulse-Width Modulated (PWM) input! It’s safe with
supply voltages up to 15 Volts, and can source up to 1.2 Amps. There’s nothing special about fan cart motors — it
could just as easily be used to drive a Peltier heater, for example.

There’s nothing special about the Hall effect switch, either: Any component that takes a 5V supply and returns a
logic-level output would work fine.

